北京總公司 010-82611269,13671083121
青島分公司 0532-82861228,15563963062
西安易科泰光譜成像與無人機遙感技術研究中心 029-81124223
海南辦事處(華南區) 13911203439
/ En

PolyPen RP-410手持式植物反射光譜測量儀

PolyPen RP-410手持式植物反射光譜測量儀

PolyPen RP-410手持式植物反射光譜測量儀
  • 發布時間: 2018-11-15 11:52
  • 發布人:
  • 點擊量: 4552

PolyPen RP-410手持式植物反射光譜測量儀

1.jpg

PolyPen RP 410手持式植物光譜測量儀通過內部光源(氙氣白熾燈380-1050nm)測定植物葉片的反射光譜,也可以測定其他光源的透光度和吸光率。PolyPen在軟件中內置了幾乎所有常用的植物反射光譜指數公式,例如NDVI,PRI,NDGI等。測得的數據以圖形或數據表的形式實時顯示在儀器的顯示屏上。這些數據都可以儲存在儀器的內存里并傳輸到電腦里。

PolyPen RP 410由可充電鋰電池供電,不需要使用電腦即可獨立進行測量。儀器配備全彩色觸屏顯示器、內置光源、內置GPS和用于固定樣品的無損葉夾。葉夾具備進行光源和檢測器校準的標準參照物。

應用領域:

?植物反射光譜測量

?植物脅迫響應

?色素組成變化

?氮素含量變化

?產量估測

技術特點:

?目前最便攜的測量植物葉片反射光譜的高光譜測量儀。

?自動計算常用的植物反射光譜指數,也可計算用戶定制的指數,同時提供高精度反射光譜圖。

?非破壞性原位測量。

?手持式儀器,電池供電,無需外部電腦,便于野外測量。

?內置GPS

技術參數:

?光譜檢測范圍:

PolyPen RP 410 UVIS光譜響應范圍為380-790nm

PolyPen RP 410 NIR光譜響應范圍為640-1050nm

?測量光譜曲線:反射率曲線、吸收率曲線

?內置植被指數:


2.jpg

PolyPen RP 410 UVIS:NDVI、SR、綠度指數、MCARI、TCARI、TVI、ZMI、SRPI、NPQI、PRI、NPCI、Carter指數、SIPI、GM1、ARI1、ARI2、CRI1、CRI2。

PolyPen RP 410 NIR:NDVI、SR、MCARI1、OSAVI、MCARI、TCARI、ZMI、Ctr2、GM2

?光源:氙氣白熾燈380-1050nm

?光譜響應半寬度:8nm

?光譜雜散光:-30dB

?光學孔徑:7mm

?掃描速度:約100ms

?觸控屏:240×320像素,65535色

?內存:16MB(可存儲4000組以上測量數據)

?系統數據:16位數模轉換

??? 3.jpg動態范圍:高增益 1:4300;低增益 1:13000

?內置GPS模塊:最大精度<1.5m

?通訊方式:USB

?軟件功能:自動計算內置植被指數、計算用戶自定義植被指數、實時顯示數據圖和數據表、數據導出為Excel、GPS地圖、固件升級,Windows XP及以上系統適用

?光譜反射標準配件(選配):提供最高的漫反射值(99%)。光譜平面涵蓋UV-VIS-NIR光譜,保證+/-1%的光學平面。用于光源和檢測器的校準。

?尺寸:15×7.5×4cm

?重量:300g

?外殼:防水濺外殼

?電池:2600mAh可充電鋰電池,通過USB接口連接電腦充電

?續航時間:可連續測量48小時

?工作條件:溫度0~55℃,相對濕度0-95%(無冷凝水)

?存放條件:溫度-10~60℃,相對濕度0-95%(無冷凝水)

軟件界面

4.jpg

應用案例

5.jpg

德國波恩大學使用RP400光譜儀測量反射光譜植被指數PRI、NPCI、GI、NDVI等研究鐵毒害對水稻的影響(Wu,2019)。

6.jpg

歐盟委員會聯合研究中心通過無人機遙測技術研究葉緣焦枯病菌在橄欖樹中的感染。同時通過FluorPen葉綠素熒光儀和RP400光譜儀直接檢測葉片的葉綠素熒光和反射光譜植被指數,用于對照修正無人機遙測數據。研究結果發表在《Nature Plants》(Zarco-Tejada,2018)。

參考文獻

1. Poblete, T., Camino, C., Beck, P. S. A.,A., Hornero, A., et al. 2020. Detection of Xylella fastidiosa in? fastidiosa infection symptoms with airborne multispectr tral and thermal imagery: Assessing bandset redu eduction performance from hyperspectral analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 27–40.

2. Junker L. V., Rascher U., Jaenicke H., et al. 2019. Detection of plant stress responses in aphid-infested lettuce using non-invasive detection methods. Integrated Protection in Field Vegetables IOBC OBC-WPRS Bulletin Vol.142, 2019 . 8-16 8

3. Wu, L.B., Holtkamp, F., Wairich, A., & Frei, M. 2019. Potassium Ion Channel Gene OsAKT1 Affects Iron Translocation in Rice Plants Exposed to Iron Toxicity. Frontiers in Plant Science, 10.

4. Bartak, M., Hajek, J., Morkusova, J., et al. 2018. Dehydration-induced changes in spec pectral reflectance indices and chlorophyll fluorescence of Antarctic e of Antarctic lichens with different thallus color, and intrathall intrathalline photobiont. Acta Physiologiae Plantarum, 40(10 10).

5. Bartak, M., Mishra, K.B., Mareckova A, M. 2018. Spectral reflectance indices sense desiccation induced changes in the thalli of Antarctic lichen Dermatocarpon polyphyllizum. Czech Polar Reports 8 (2): 249-259.

6. Gálvez, S., Mérida-García, R., Camino Ino, C. et al. 2018. Hotspots in the genomic architectu hitecture of field droughtresponses in wheat as breeding targets. Functional & Integrative Genomics.

7. Nuttall, J. G., Perry, E. M., Delahunt Ty, A. J. et al. 2018. Frost response in wheat and early detection using proximal sensors. Journal of Agrono f Agronomy and Crop Science, 205(2), 220–234.

8. Sytar O., Zivcak M., Olsovska K., Breststic M. 2018 Perspectives in High-Throughput Phenotyping of Qualitative Traits at the Whole-Plant Level. In: Sengar R., Singh A. (eds) Eco-friendly Agro-biolog logical Techniques for Enhancing Crop Productivity. Springer, Singapore.

9. Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., et al. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4(7), 4 ts, 4(7), 432–439.

10. A Niglas, et al. 2017. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula). Tree Physiology 37(9): 1218-1228

11. M Ashrafuzzaman, et al. 2017. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). Environmental Pollution 230: 339-350

12. M López-López, et al. 2016. Early Detection and Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery. Remote Sens. 8(4): 276

13. PJ Zarco-Tejada, et al. 2016. Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sensing of Environment 179: 89-103

14. VV Ptushenko, et al. 2015. Possible reasons of a decline in growth of Chinese cabbage under a combined narrowband red and blue light in comparison with illumination by high-pressure sodium lamp. Scientia Horticulturae 194: 267-277

15. VV Ptushenko, et al. 2014. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants. Biochemistry (Moscow) 79: 260-272

內置計算公式的植物光譜指數:

?歸一化差值植被指數Normalized Difference Vegetation Index (NDVI)

參考文獻:Rouse et al. (1974)

公式:NDVI = (RNIR - RRED ) / (RNIR + RRED )

?簡單比值植被指數Simple Ratio Index (SR)

參考文獻:Jordan (1969); Rouse et al. (1974)

公式:SR = RNIR / RRED

?改進的葉綠素吸收反射指數1 Modified Chlorophyll Absorption in Reflectance Index 1 (MCARI1)

參考文獻:Haboudane et al. (2004)

公式:MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)]

?最優化土壤調整植被指數Optimized Soil-Adjusted Vegetation Index (OSAVI)

參考文獻:Rondeaux et al. (1996)

公式OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16)

?綠度指數Greenness Index (G)

公式G = R554 / R677

?改進的葉綠素吸收反射指數Modified Chlorophyll Absorption in Reflectance Index (MCARI)

參考文獻:Daughtry et al. (2000)

公式MCARI = [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670)

?轉換類胡蘿卜素指數Transformed CAR Index (TCARI)

參考文獻Haboudane et al. (2002)

公式TSARI = 3 * [(R700- R670) - 0.2 * (R700- R550) * (R700/ R670)]

?三角植被指數Triangular Vegetation Index (TVI)

參考文獻Broge and Leblanc (2000)

公式TVI = 0.5 * [120 * (R750- R550) - 200 * (R670- R550)]

?Zarco-Tejada & Miller 指數Zarco-Tejada & Miller Index (ZMI)

參考文獻Zarco-Tejada et al. (2001)

公式ZMI = R750 / R710

?簡單比值色素指數Simple Ratio Pigment Index (SRPI)

參考文獻Pe?uelas et al. (1995)

公式SRPI = R430 / R680

?歸一化脫鎂作用指數Normalized Phaeophytinization Index (NPQI)

參考文獻Barnes et al. (1992)

公式NPQI = (R415- R435) / (R415+ R435)

?光化學植被反射指數Photochemical Reflectance Index (PRI)

參考文獻Gamon et al. (1992)

公式PRI = (R531- R570) / (R531+ R570)

?歸一化色素葉綠素指數Normalized Pigment Chlorophyll Index (NPCI)

參考文獻Pe?uelas et al. (1994)

公式NPCI = (R680- R430) / (R680+ R430)

?Carter指數Carter Indices

參考文獻Carter (1994), Carter et al. (1996)

公式Ctr1 = R695 / R420; Ctr2 = R695 / R760

?結構加強色素指數Structure Intensive Pigment Index (SIPI)

參考文獻Pe?uelas et al. (1995)

公式SIPI = (R790- R450) / (R790+ R650)

?Gitelson and Merzlyak 指數 Gitelson and Merzlyak Indices

參考文獻Gitelson & Merzlyak (1997)

公式GM1 = R750/ R550; GM2 = R750/ R700

?花青素反射指數Anthocyanin Reflectance Indices

參考文獻:Gitelson et al. (2001)

公式:ARI1 = 1/R550 – 1/R700; ARI2 = R800 * (1/R550 – 1/R700)

?類胡蘿卜素反射指數Carotenoid Reflectance Indices

參考文獻:Gitelson et al. (2002)

公式:CRI1 = 1/R510 – 1/R550; CRI2 = 1/R510 – 1/R700

產地:歐洲

注:本文轉載自易科泰,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。如有侵權行為,請聯系我們,我們會及時刪除。
波多野结衣电影